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Project Objectives

• Develop an adaptive implementation 
modeling and monitoring strategy (AIMMS) 
for TMDL improvement.

• Apply and evaluate AIMMS on the Neuse 
Estuary TMDL in North Carolina.
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We need predictions to guide 
TMDL decision making, so what 

should we do?

Adaptive Implementation

We can “learn while doing;” that is, we can 
observe how the real system (the actual 
waterbody) responds, and then use that 

information to augment and improve the 
prediction for the modeled system.



• Step 1:  To define the allowable pollutant load (the TMDL), a 
water quality model is applied; the forecast from this model 
provides the initial estimate of how the waterbody will respond 
to the pollutant load reductions required in the TMDL.

How might we conduct adaptive 
implementation?

• Step 2: After the TMDL is implemented (i.e., nonpoint & point 
source pollution controls in place), a properly-designed monitoring 
& research program is established; this program can be focused 
on assessment of particular pollutant controls and/or on overall
waterbody compliance with standards.

• Step 3:  The pre-implementation model forecast (from step 1) is 
combined with the post-implementation monitoring (from step 
2); this provides the best overall estimate of TMDL success and 
provides the basis for any necessary revisions to the TMDL.



Adaptive Implementation: Bayesian Analysis

Prior (model forecast)
Sample
(monitoring
Data)

Posterior (integrating modeling
and monitoring)

Water Quality Criterion Concentration



Example: TN in Neuse Estuary

• Prior distribution of log TN concentration 
assessed from the Bayesian SPARROW 
model

• TN monitoring data collected from 1992 –
2000

• The log TN distribution is updated using 
one year’s data at a time to illustrate 
sequential updating.





Neuse SPARROW Model

iε
J(i)j

N

1n
ji,sHji,r)HjZα'exp(jn,SnβiLoad TN ∑ ∑

∈ =
−=

Stream
Load at 
reach i

Sources Land-to-water
transport

Aquatic
transport

Error

n = number of sources
j = reaches in the set J(I)



Neuse Estuary: Prior Parameters

Using the Bayesian SPARROW model to 
create the prior distribution, we generated 
10,000 pairs of samples of  the mean and 
variance for log TN.



Sequential Updating

• Repeated use of the Bayes theorem
• Current posterior becomes prior when new 

data are available.
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log TN Concentration
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Example: Chl a in Neuse Estuary

The Chlorophyll model in NeuBERN: 
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Nitrogen
Inputs Cause and Effect

Relationships
Cause and Effect

Relationships

Frequency 
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Prior Information

• TN: random samples from Bayesian 
SPARROW

• β’s: original NeuBERN regression analysis
• Model error: original regression analysis
• Monte Carlo simulation: random samples of 

log(chla)
• Assume log(chla) ~ N(µ, σ2)
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log Chla Concentration
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Example: Chla Model Updating

• Using yearly data to update model 
parameters
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Example: Chla Model Updating

• Probabilistic expression:

Where:

Same general setting under Bayes Theorem, but 
with a large number of parameters

),(~)log( 2σµNChla

),,,,( TNTChf θβµ =



Example: Chla Model Updating

• No conjugate family of priors 
• No analytical solutions for posteriors
• Numerical solution using Markov chain 

Monte Carlo simulation
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Post (TMDL) Implementation Questions

• Has compliance with the water quality 
standard been achieved?

• If compliance has not been achieved, what 
pollutant reduction actions did not respond as 
predicted?



Tasks Completed or Underway

• NeuBERN and SPARROW models have 
been linked within a Bayesian framework 
(WinBUGS)

• NeuBERN is being re-specified to add more 
mechanism.
• SPARROW has been re-calibrated to address 
spatial correlation and improve parameter 
estimators. Ultimately, it will be further revised 
to allow for subwatershed-specific parameters.



Issues to Address in Year 3

• Use the CUAHSI “digital watershed” to 
efficiently link SPARROW and NeuBERN
• Represent land use (pollutant load) change in 
SPARROW
• Characterize prior probabilities for 
SPARROW parameters
• Design monitoring program (sensitivity 
analysis)
• Assess role of stakeholders



Expected Outcomes

• Re-assessment of the Neuse nitrogen TMDL 
for NC Division of Water Quality

• Development of guidelines and procedures for 
adaptive implementation of TMDLs

• Determination of effective roles for stakeholders
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